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Visco-Hyperelastic Model for Soft Rubber-like Materials
(Model Likat-Hiperkenyal untuk Bahan Lembut seperti Getah)

MOHD AFANDI P. MOHAMMED*

ABSTRACT

This paper investigates the application of visco-hyperelastic model to soft rubberlike material, that is gluten. Gluten is a 
major protein in wheat flour dough (a mixture of flour and water) which exists as long network fibers and undergo large 
deformation under uniaxial tension and compression. The visco-hyperelastic model is represented by a combination of 
the viscoelastic Prony series and the hyperelastic extended tube model. Calibration of the visco-hyperelastic model to 
gluten tests result suggests that gluten can be modelled as a finite viscoelastic material. 
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ABSTRAK

Kertas ini mengkaji aplikasi model likat-hiperkenyal kepada bahan lembut seperti getah, iaitu gluten. Gluten ialah 
protein utama di dalam doh gandum (campuran tepung gandum dan air) yang wujud sebagai rangkaian gentian panjang 
dan melalui pemanjangan oleh tegangan dan mampatan. Model likat-hiperkenyal tersebut diwakili oleh kombinasi likat 
kenyal siri Prony dan model hiperkenyal lanjutan tiub. Kalibrasi model likat-hiperkenyal kepada data kajian daripada 
bahan gluten mencadangkan bahawa gluten boleh dimodelkan sebagai bahan likat kenyal terhingga. 

Kata kunci: Gluten; hiperkenyal; likat kenyal; model lanjutan tiub

INTRODUCTION

Food materials like bread dough, gluten, and cheese are 
shown to behave like rubberlike and strain rate-dependent 
materials (Charalambides et al. 2006; Goh et al. 2004; Ng 
& McKinley 2008; Tanner et al. 2008). Rate-dependent 
materials are also known as viscoelastic materials, whereas 
rubberlike materials are known as hyperelastic materials. 
A combination of the viscoelastic and hyperelastic 
is simply referred to as visco-hyperelastic materials. 
Constitutive modelling of these materials is performed 
using finite element (FE) method (Charalambides et al. 
2006) in commercially available software such as Abaqus 
(2009). However, before model with complex geometry 
is generated in Abaqus, it is suggested that calibration of 
analytical equations to test results to be performed, which 
yield the same results as the one in finite element (FE) 
software. The advantage of using analytical equations 
for non-linear constitutive models (i.e. visco-hyperelastic 
model) is that it can be performed using spreadsheet like 
Microsoft Excel, which has the capability to perform least 
squares method to optimise material model parameters. 
Therefore, this paper investigates constitutive modelling 
of analytical visco-hyperelastic model for soft rubberlike 
material, i.e. gluten. This is performed by a development of 
the visco-hyperelastic model, which is introduced through 
a combination of the viscoelastic Prony series (Kaliske 
et al. 2001) and the hyperelastic extended tube model 
(Vilgis et al. 2009). In the next section, derivation of the 
visco-hyperelastic model will be shown. This is followed 

by a discussion on the experimental work of gluten by 
Mohammed et al. (2011). Finally, calibration of the model 
to the experimental results of wheat gluten by Mohammed 
et al. (2011) is shown and discussed.

METHODS

DERIVATION OF VISCO-HYPERELASTIC MODEL

The finite viscoelastic model is discussed as below. The 
theoretical and experimental behaviours of viscoelastic 
materials were first established in the 19th century by 
physicists Maxwell, Boltzmann and Kelvin. Viscoelastic 
materials can be viewed as having both viscous and 
elastic properties. Elastic materials stretch and return 
to their original state instantaneously upon application 
and removal of stress, respectively. The ratio of stress to 
strain for an elastic material is defined as elastic modulus. 
Viscous materials on the other hand change strain in 
proportion to the time that the stress is applied (Janmey 
& Schiwa 2008). The ratio of stress to rate of strain is 
defined as viscosity. Viscoleastic materials can exhibit 
strain and time dependent behaviour when both viscous 
and elastic properties are present. The mathematical theory 
of viscoelasticity is as follows.
	 Viscoelasticity assumes a homogeneous and isotropic 
material, as well as separable time and strain dependent 
material behaviour (Charalambides et al. 2006; Goh et 
al. 2004; Williams 1980). The relaxation stress under a 
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step strain loading history can be written as a product of a 
function of time, g(t) and a function of strain, σ0(ε): 
	
	 σ(ε,t) = σ0(ε)g(t).	 (1) 

	 The time function can be represented by the Prony 
Series (Goh et al. 2004):

	 g(t) = g∞+ 	 (2) 

where t and ξi are time and relaxation time constants, 
respectively and gi are dimensionless constants. The 1D 
equivalent of the Prony series in tension consists of a series 
of Maxwell elements connected in parallel with a spring 
is shown in Figure 1.

	 g(t–s) = g∞ +  	 (5) 

Therefore (4) becomes:

	 σ(t) = 	 (6) 

	 The stress on the left-hand side is expressed in terms 
of t only, provided that the strain history ε(t) is known (Goh 
et al. 2004). Equation (6) can be rewritten as:

	
σ(t) = g∞σ0(t) +

		  = g∞σ0(t) + 	  (7)

with hi(t) =  

	 The convolution integral in (7) is computed using 
a numerical algorithm based on finite time increments 
(Kaliske & Rothert 1997). For a time interval (tn, tn+1) and 
time step Δt = tn+1 – tn, the exponential term in the integrand 
is written as:

	 	
(8) 

	 The term hi at tn+1 can be separated into two 
components: The first component corresponds to 
deformation history during period 0 ≤ s ≤ tn while the 
second component corresponds to the period, tn ≤ s ≤ tn+1. 
Therefore:

	 hi(tn+1) = gi 	 (9) 

which becomes:

	 hi(tn+1) = 

	 (10) 

	 The first integral above is integrated from 0 to tn, which 
yields:

	 	 (11) 

The result is included in (7):

	 σ(tn+1) = g∞σ0(tn+1) 

	
	

(12)

FIGURE 1. The Prony series representation

Each gi is defined as:
 
	 	 (3) 

where Gi is the modulus of the ith spring, G∞ is the modulus 
of the infinite lone spring and G0 is the instantaneous 

modulus, given by + G∞ = GO. Therefore gi is related 

to g∞ through  + g∞ = 1. The function σ0(ε) represents 
the instantaneous stress-strain relationship since  and  from 
(1). Note that  is the long term or equilibrium stress-strain 
relationship as  g(∞) = g∞ and  σ(ε, ∞) = g∞σ0(ε) from 
(1). This long term behaviour occurs physically as the 
dashpots relax the i springs in Figure 1 and only the g∞ 
spring remains loaded.
	 Using the Leaderman form of the convolution integral 
(Williams 1980), the total stress is given by the algebraic 
sum of the entire past loading history, with each stress 
component being independent of the loading history. In the 
limit of continuous strain history, the total stress at time t 
is therefore given by (Williams 1980):

	 σ(ε,t) = 		  (4) 

where σ0(ε) is the instantaneous true stress at strain ε. The 
function g(t–s) is described as:
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 in (12) can be expressed in terms of discrete time 

steps:

	 	 (13) 

	 Substituting (13) into (12) and performing the last 
integral in (12) leads to a function for updating the stress 
σ(tn+1)  (Goh et al. 2004):

	 σ(tn+1) = g∞σ0(tn+1) 

	

(14) 

	 Equation (14) can be evaluated with various rubberlike 
(hyperelastic) potentials. The true stress,  σ(tn) used will 
be discussed later in this section. 
	 It is worth noting that in the newer version of the 
commercial finite element software, Abaqus version 6.9 
(Abaqus 2010), an updated version of viscoelastic model 
has been introduced to replace the former Abaqus version 
6.8 (Abaqus 2009) (14). A modification is performed to 
(6) as follows:

	 σ(t) = λ(t) 	 (15) 

	 Notice the difference where σ0 in (6) represents the 
true stress term, whereas P0 in (15) represents the nominal 
stress term. The stretch ratio,  λ(t) is introduced in (15) to 
convert the nominal stress term in the integral into true 
stress term after integration. True stress and nominal stress 
are related through:

	 σ0(tn) = P0(tn)·λ(tn).	 (16) 

	 Equation (15) is then evaluated using the same finite 
time increment algorithm as before, which finally yields:

	

	 (17) 

	 On the other hand, the following form of viscoelastic 
model can be used:

	 	
	 (18) 

where S0 in (17) represents the Second Piola Kirchoff stress 
term, as performed by Kaliske et al. (2001). The stretch 
ratio,  λ2(t) is introduced in (18) to convert S0 in the integral 
into true stress term after integration. True stress and the 
Second Piola Kirchoff are related through:

	 σ0(tn) = S0(tn)·λ
2(tn).	 (19) 

	 Equation (18) is then evaluated using the same finite 
time increment algorithm as before, which yields:

(20) 

	 The advantage of using (20) is that the Second Piola 
Kirchoff stress does not admit a physical interpretation in 
terms of surface traction as well as having a symmetric 
tensor function (Holzapfel 2000). This allows a damage 
function to be included into the finite viscoelastic model, 
as performed by Kaliske et al. (2001). For details on the 
derivation of Second Piola Kirchoff, true and nominal 
stresses using tensor mechanics, please refer to Holzapfel 
(2000). 
	 The difference between the finite viscoelastic model 
in Abaqus versions 6.8 and 6.9 (14 and 17) are highlighted 
in their respective Abaqus theory user manuals (Abaqus 
2009; 2010). This has also been discussed theoretically 
by Ciambella et al. (2009) whose suggested that the finite 
viscoelastic model in Abaqus version 6.8 (14) cannot 
describe accurrately the 3D FE viscoelastic model at large 
strain. 
	 The advantage of the analytical equation discussed in 
this section is that it can be readily fitted to experimental 
stress–strain data which are measured at known time 
intervals. The equation offers a very practical method for 
determining material constants at any deformation history. 
A spreadsheet can be set up so that the calculations using 
the analytical equation are matched to the experimental 
data via a least squares error method.
	 The true stress, σ0(tn) used in the finite viscoelastic 
model (i.e. (20)) is obtained using the extended tube model. 
The extended tube model is described by first considering 
the concept of rubberlike materials. A rubberlike material is 
defined as an ideally elastic material, but may be subjected 
to large deformations and still show complete recovery 
(Ward 1971). The rubber elasticity can be described 
using the concept of a strain energy function derived 
from thermodynamic considerations. Different types of 
strain energy function can be defined, depending on the 
experimental conditions. Strain energy functions can be 
described from either a phenomenological or a statistical 
mechanics. In statistical mechanics, the strain energy 
function is represented as the Helmholtz free energy of 
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a molecular network with a Gaussian chain distribution 
(Treloar 1975). The theory can be described from the First 
Law of Thermodynamics:

	 dW = dU – dQ,	 (21) 

where dW is work performed on the system by the 
surroundings, dU and dQ are differential change in internal 
energy and heat, respectively. Under adiabatic conditions, 
dQ = 0 and dW = dU. The strain energy function W for 
an isotropic incompressible solid undergoing a pure 
homogeneous deformation is given by (Ward 1971):

	 W = f (I1, I2, I3),	 (22) 

where f is a function of I1, I2 and I3, which are the first, 
second and third strain invariants, respectively, expressed 
as: I1 = λ1

2 + λ2
2 + λ3

2,  I2 = λ1
2λ2

2 + λ2
2λ3

2 + λ3
2λ1

2 and I3 = 
λ1λ2λ3. The third strain invariant, I3, is assumed to be unity 
due to the assumption of incompressibility. λ1, λ2 and λ3  
are the stretch ratios in the three principal axis, which are 
defined for uniaxial deformation (i.e. uniaxial compression 
and tension) as:

	 λ1 = λ, λ2 = λ3 = 	 (23) 

where λ is the stretch ratio in the direction of the applied 
load. The stretch ratio, λ is described as: λ = (l/l0), where  
l and l0 are the current and original heights, respectively. 
The current height, l0 is defined as:(l = l0 + δ), where 
deformation, δ is defined in tension δ > 0  and δ < 
0  in compression.  I1, I2 and I3 in the case of uniaxial 
deformation can be described as:

	 I1 = λ2 + 2λ–1,    I2 = 2λ + λ-2,    I3 = 1.	 (24)

	 Note that I3 = 1 in (24) indicates incompressibility 
assumption. For uniaxial tension and uniaxial compression, 
the true stress used in (14) is given as a function of λ:

	 σ0(λ) = 	 (25) 

	 Examples of the strain energy function, W or 
hyperelastic models developed using statistical mechanics 
includes the van der Waals rubber model (Kilian 1982), 
Arruda-Boyce model (1993) and Edwards-Vilgis model 
(Edwards & Vilgis 1986). 
	 This work therefore considered the statistical 
mechanics approach, in particular the extended tube model 
by Kluppel and Schramm (2000) and Vilgis et al. (2009). 
The model can be described using the analogy a network 
chain in a virtual tube. The tube is allowed to expand and 
contracts, where the tube movement is described using a 
Gaussian distribution function. The strain energy function 
for the extended tube model can be defined as follows 
(Kluppel & Schramm 2000).

	 W = Wc + We,	 (26) 

where Wc is the energy related to cross-link of network and 
We is the energy related to topological tube-like constraint. 
Equation (26) then becomes (Kluppel et al. 2001):

	 	 (27) 

	 The moduli, Gc and Ge are elastic modulus and 
‘entanglement’ modulus, respectively. The elastic modulus 
increases as the density of network junctions increases, 
whereas the ‘entanglement’ modulus is proportional to the 
entanglement density of the rubber network. To improve 
the first term in (27), Kluppel et al. (2001) suggested the 
path integral approach for the network rubber by Edwards 
and Vilgis (1986), which is expressed as:

(28) 

where  ls and L are the Kuhn length and the total length 
of polymer chain, respectively and conts is a constant. 
The Kuhn length describes freely jointed segments of 
the polymer chain. R is described as a locus in space or 
coordinate, S of a long polymer chain (Edwards & Vilgis 
1986), where the mean value of , is described as:

	 	 (29) 

whereas R´(s) is described as R´(s) ≡∂R(s)/ds2. The 
parameter, Te represents the trapping factor with the 
following constraint: (0< Te <1), which characterises 
the portion of elastically active entanglements of rubber 
chains. The parameter, ne on the other hand is the number 
of statistical chains segments between two successive 
entanglements, which increases as the crosslink density 
increases. A modification was performed by Kluppel et al. 
(2001) using (27), (28) and (29), which yields:

	 (30) 

where the first and second terms in (30) is related to Wc and  
We in (26), respectively. Note that in the limit of  ne→∞, 
(30) will becomes (27). 
	 Finally, the true stress for (30) is obtained using (25) 
and (30):
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	 (31) 

	 Note that several polymer tube models are available 
in literature, for example the Pom-Pom model (McLeish 
& Larson 1998), the Doi-Edwards model (Doi & Edwards 
1986) and the extended tube model by Kaliske et al. 
(2001). 

EXPERIMENTAL WORK ON GLUTEN

Gluten is a major protein in wheat flour dough (a mixture 
of flour and water), which exists as long network fibers 
(Singh & MacRitchie 2001). This enables gluten to 
undergo large deformation under uniaxial tension and 
compression (Charalambides et al. 2006; Tanner et al. 
2008). By using the polymer network theory, Singh and 
MacRitchie (2001) suggested that gluten can be treated 
as a rubber-like material. On the other hand, gluten has 
been shown to behave like a viscoelastic material by 
previous researchers (Ng & McKinley 2008; Ng et al. 
2011; Uthayakumaran 2002) based on stress relaxation 
rheometry tests. To investigate the behaviour of gluten 
discussed before, the experimental results of gluten are 
shown in Figure 2, which were obtained from Mohammed 
et al. (2011).
	 The results consist of uniaxial compression, uniaxial 
tension, compression relaxation and cyclic compression 
tests. The uniaxial tension tests were performed by 
clamping both ends of a sample and pulling them in 
opposite directions at a fixed rate using a testing machine 
(i.e. Universal Testing Machine). The load direction in the 
tensile test is opposite to the load direction in the uniaxial 
compression test. A stress relaxation test was conducted in 
compression mode, where a specimen was compressed to 
a required strain and held fixed for a period of time while 
the stress decay was measured. Cyclic compression tests 
were performed by loading and unloading a sample under 
compression mode at the same strain rate. The reloading 
curve for the cyclic compression tests was activated once 
the stress in the unloading curve becomes zero. Details 
on the experimental procedures involved are discussed in 
Mohammed et al. (2011, 2013). It can be seen in Figure 2 
that gluten shows rubberlike (strain hardening) behaviour 
under uniaxial tension. On the other hand, the stress 
relaxation test results and different stress-strain curve 
under different strain rate suggests viscoelastic behaviour 
of gluten. Therefore a combination of viscoelastic and 
hyperelastic model (visco-hyperelastic model) is believed 
to represent the mechanical behaviour of gluten. This 
will be investigated further in the next section using the 
visco-hyperelastic model.

RESULTS AND DISCUSSION

CALIBRATION OF VISCO-HYPERELASTIC MODEL TO 
GLUTEN TESTS RESULTS

In order to illustrate the application of the visco-
hyperelastic model discussed in the previous section, 
calibration of the model (20) and (31) was performed 
and compared to the experimental results of gluten by 
Mohammed et al. (2011) (Figure 2). Calculation of 
the equations was performed using Microsoft Excel 
spreadsheet, where the analytical equations were matched 
to the experimental data via a least squares method (Goh 
et al. 2004).
	 The parameters which give the best fit to the 
experimental results in Figure 2 are shown in Table 1. It 
can be seen that the Prony series constants reduced from 
0.5 at 0.1 s to 0.045 at 1000 s, which indicates the stress 
relaxed over time at strain -1.
	 Noticed that the model agrees reasonable well to the 
experimental results except for the tension results (Figure 
2(b)) for strain larger than 0.7. This indicates that further 
work is needed to ensure that the model parameters 
represent the physical behaviour of the material tested. To 
achieve this, Vilgis et al. (2009) suggested that in addition 
to stress–strain measurements which yields the modulus 
and shape of the stress–strain curve, investigation on 
the neutron scattering of biopolymer networks (i.e. 
gluten) can be conducted, which would corresponds to 
the probability distribution of the networks. It is worth 
noting that the microstructure networks of gluten consist 
of glutenin and gliadin (Edwards et al. 2003), where the 
exact contribution of these constituents toward elasticity 
of gluten is not clearly identified. On the other hand, 
dynamic mechanical measurements of gluten can be 
performed using the rheometers, after which unique 
viscoelastic material parameters for gluten can be 
determined using the critical gel Lodge-rubberlike model 
by Ng and McKinley (2008) and Ng et al. (2011).
	 Finally, further work is suggested to investigate 
the hysteresis and partial recovery of gluten shown in 
Figure 2(d), where the gluten unloading stress-strain 
curve does not recover back to zero when the stress is 
zero. It is possible that this could be due to the gluten 
networks being damaged from stretching or compression 
under large deformation. This could be investigated 
further using Cryogenic Scanning Electron Microscope 
(Kontogiorgos & Goff 2006). Discussion on the theory of 
gluten extensibility is provided by Singh and MacRitchie 
(2001).

CONCLUSION

Constitutive modelling of analytical visco-hyperelastic 
model for soft rubberlike material, i.e. gluten was 
performed. The mathematical derivation of the visco-
hyperelastic model was shown, which consists of a 
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combination of the viscoelastic Prony series and the 
hyperelastic extended tube model. The model was 
calibrated to the gluten tests results. The model agrees 
reasonably well to the experimental results, except for 
the tension results for strain larger than 0.7. This suggests 
that a detailed physical and rheological study is needed to 
represent a physical behaviour of the gluten tested.
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